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Abstract

The main goal of this thesis was to prove the feasibility of basing electron depth
dose calculations in a phantom on first-principles single scatter physics, in an
amount of time that is equal to or better than current electron Monte Carlo meth-
ods.

The Macro Response Monte Carlo (MRMC) method achieves run times that are
on the order of conventional electron transport methods such as condensed history,
with the potential to be much faster. This is possible because MRMC is a Local-to-
Global method, meaning the problem is broken down into two separate transport
calculations. The first stage is a local, in this case, single scatter calculation,
which generates probability distribution functions (PDFs) to describe the electron’s
energy, position and trajectory after leaving the local geometry, a small sphere or
“kugel”.

A number of local kugel calculations were run for calcium and carbon, creating
a library of kugel data sets over a range of incident energies (0.25 MeV - 8 MeV)

and sizes {0.025 cm to 0.1 cm in radius).

The second transport stage is a global calculation, where steps that conform
to the size of the kugels in the library are taken through the global geometry. For
each step, the appropriate PDFs from the MRMC library are sampled to determine
the electron’s new energy, position and trajectory. The electron is immediately
advanced to the end of the step and then chooses another kugel to sample, which

continues until transport is completed.

The MRMC global stepping code was benchmarked as a series of subroutines
inside of the Peregrine Monte Carlo code. It was compared to Peregrine’s class 11

condensed history electron transport package, EGS4, and MCNP for depth dose in



it

simple phantoms having density inhomogeneities. Since the kugels completed in
the library were of relatively small size, the zoning of the phantoms was scaled down
from a clinical size, so that the energy deposition algorithms for spreading dose
across 5-10 zones per kugel could be tested. Most resulting depth dose calculations
were within 2-3% of well-benchmarked codes, with one excursion to 4%.

This thesis shows that the concept of using single scatter-based physics in
clinical calculations would not only be possible, but would likely be more efficient
than current methods, provided large kugels were generated.

This work was performed under the auspices of the U.S. Department of Energy
by the Lawrence Livermore National Laboratory under contract no. W-7405-ENG-
48.
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Chapter 1

Electron Dose Calculation

Methods

1.1 Introduction

1.1.1 The Role of Electrons and their Simulation in Radio-

therapy

For all its relative succeés as a cancer treatment modality, radiotherapy still suffers
from the fundamental need for more detailed knowledge about where the energy
is being deposited in the patient. Traditionally absorbed dose computation has
been based on correcting dose distributions that have been measured in a water
phantom, as will be discussed below. It would be much more desirable to calculate
the dose distribution from first principles. Although we presently have no means
to calculate the exact dose distribution delivered in a particular patient, we are
able to simulate the physics of a treatment in a patient’s own anatomy, provided
CT data are available for that patient. There are many methods of simulation,

several of which will be discussed in this chapter.

Ultimately it is hoped that accurate simulation will lead to more conformal
dose distributions, confidence in dosimetry, and optimization of treatment plans.

The better the dose is conformed to the tumor, the higher the dose levels can

1



2 CHAPTER 1. ELECTRON DOSE CALCULATION METHODS

be tolerated for the same complication rate; or conversely, the lower the compli-
cation rate can be for the same absorbed dose. Together these factors will bring
about higher cure rates for tumors, and/or lower complication rates, allovﬁng more
patients to live comfortable lives.

Electrons play an important role in radiotherapy. Not only are they used as a
primary beam in all or part of approximately 5-10% of all radiotherapy treatments,
they also arise as secondary particles in all other treatments — most notably in those
using photon beams, which account for the vast majority of all treatments.

The main reason primary electrons are used to treat certain tumors is that
almost all of their energy is deposited up to a predictable depth in the medium,
which means normal tissue downstream of the incident beam is spared. This can be
seen in the typical electron depth-dose curve shown in Figure 1. The electrons will
cause deposition of a very small amount of energy beyond their practical range in a
medium, due to bremsstrahlung photons which they create as they (de)accelerate
in the medium. These photons have a much lower probability of interaction than
the electrons, and travel deeper as they exponentially attenuate. Electrons are
often the modality of choice for tumors residing a few centimeters below the skin,
especially when other critical organs are located beyond the tumor, such as in the
head and neck region.

Electrons also have the advantage of being inexpensive to generate. In addition,
they have been widely used for over thirty years, which has allowed much physician

experience to be accumulated.

1.1.2 Simulating the Transport of Electrons in Media

Simulating electron interactions in media involves unique challenges relative to
other types of particle transport for several reasons. First, the cross sections for

electrons tend to be five or six orders of magnitude higher than those for neutrons
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Depth Dose for 10 MeV e- in Water
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Figure 1: Example of a typical depth-dose curve for a electron beam. This is a 10

MeV electron beam normally incident on a water phantom.




4 CHAPTER 1. ELECTRON DOSE CALCULATION METHODS

or photons of the same energy, so simulation of each collision has historically been
too time-consuming to be done routinely. For instance, the mean free path of a 1
MeV electron in water is approximately 10~* c¢m, which is quite small in relation

to the volumes of interest for most transport problems.

Secondly, the fractional energy loss per collision is frequently five orders of
magnitude smaller for electrons than it is for photons. This indicates that the
number of interactions required for an electron to give up all of its energy is very
large. With a few rare but important exceptions, single interactions do not change
the electron’s energy or direction by a large amount. It is rather the cumulative
effect of many small changes that result in the characteristics of the electron track.
Thus it 1s important to have accurate physics for each event, since errors will easily

compound as the electron slows down.

Finally, even though most of the changes in energy and angle are small, they
are not insignificant. For heavier charged particles, one can usually make a simple
(Gaussian-like) approximation for the lateral distribution; for electrons, these ap-
proximations do not hold as well because they tend to underestimate the degree

of lateral transport.

The key to getting electron absorbed dose distributions correct in an inhomoge-
neous phantom or patient is to simulate the lateral transport correctly. To achieve
this, it is crucial that the scatter angles are modeled accurately. In particular, the
low-probability large-angle scatters and backscatters cannot be underestimated, for
it is these events that lead to the complicated structure in the dose distributions,

especially near media interfaces.
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1.1.3 Approaches to Clinical Electron Dose Calculation

Traditionally, electron dose distributions were approximated without doing any
explicit electron transport at all, but rather by extrapolating from measured re-
sults taken for a particular energy, field size and source-to-surface distance {SSD)
on a given accelerator. The extrapolation was done by modifying the absorbed
dose that was experimentally determined under the reference parameters by ratios
representing the change between those parameters and the parameters of interest.
For example, if dose values were measured in water, a table of the percentage of
the maximum dose as a function of depth (on-axis) in the water could be deduced.
A similar table could be generated for off-axis ratios (OARs) by measuring lateral
profiles at a variety of depths.The dose at a given point P in the patient could
then be estimated by knowing the maximum dose for the treatment and applying
the percent depth dose (PDD) correction for the depth of P in the patient, and an

off-axis correction for the distance to P from the axis at that depth.

Tables of PDDs were available for various sources {incident energies), field sizes,
depths in phantom, and SSDs. To modify the dose for an SSD that was different
from the reference SSD, the ratio of inverse distances squared would be applied. For
a change in field size, tables of field-size-factors would be applied. To compensate
for the curved surface of a patient, as opposed to the flat surface of the phantom,

the isodose lines could be shifted along rays projecting from the source.

It is important to point out that these techniques are often quite successful
for predicting dose in a homogeneous volume. In fact, in some cases they may be
superior to some more advanced methods (for homogeneous volumes) because they
are based on measurements from a particular machine; thus they circumvent the
problem of how to model the electron distributions emerging from the source and
incident on the patient/phantom, which can be a significant obstacle to transport-

based methods.
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The real challenge for these empirical-based methods, then, lies in correcting
the homogeneous water dose distribution to account for the many inhomogeneities
present in the human body, such as air cavities, bone, dense muscle mass and
sparse lung tissue.

One way of addressing this problem was to apply “equivalent-thickness correc-
tions” to the water measurements. These corrections were based on compressing or
stretching the isodose lines by factors that were derived from the relative electron
density in the path through tissue as compared to that in water [36, 1]. These
methods, at their best, were useful for obtaining depth dose information in the
center of a broad beam, for 2 medium consisting of homogeneous layers. Even
then, they do not account for the fact that electrons interact not only with other
electrons, but also with the nucleus. For example, the elastic scattering cross sec-
tion, introduced in Chapter 2, depends on the atomic number of the material.
The clinical implication of this is that not all materials behave like scaled-density

water; real bone, for example, scatters much more than water of bone density.

1.2 The “Right” Way: The Boltzmann Equation

At the most fundamental leve], radiation transport is an attempt to derive a dis-
tribution of the particles (in space, direction, time and energy) after they have
traversed some distance into a medium. Formally, the way to begin this endeavor
is by writing the general equation for transport from kinetic theory. Kinetic theory
does not treat individual particles, but rather describes the aggregate behavior of
continuous field of particles in a statistical manner [39].

Let n be the number of particles that is expected within a differential volume
element, d°r, with a velocity (which is directly related to its kinetic energy) that is
within a differential velocity group, d®v, at time ¢. The function n(r, v, t), called

the “phase space density function”, thus contains all of the information required
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for the description of standard transport processes; if a general solution is found
for n, then the transport problem is solved.

Imagine that it is desired to transport the radiation through an arbitrary vol-
ume V, with a surface area S. The only mechanisms that can alter the number
of particles in V' are flow through the surface of V', collision events within V, or

sources of new particles located inside of V:

time rate change due change due change due
of change | = to flow + | tocollisions | + | to sources (1.1)

L of n J l_ through S J L inV J l_ inV

For the case of electron transport through tissue, the equation can be simplified
due to a few basic facts about the nature of the problem. First, since we are not
interested in information as a function of time (we only care about the total distri-
bution after a treatment), we may consider a time-independent form of the above
equation. Secondly, we can assume that the medium is in thermal equilibrium.
This allows us to use the well-known Maxwell-Boltzmann equation to approximate
equation 1.1. Thirdly, since the incident particles themselves do not interact with
each other until fluences much higher than those used for radiotherapy are reached,
terms higher than linear in the Boltzmann equation may be neglected. Thus the

appropriate equation in differential form is
v-yn+ovin = /U'Es(v’ —v)n(r,v)dv +s, - (1.2)

where the first term reflects flow in and out of the volume; the second term accounts
for the loss of the particles by the medium, where the third term represents the
gain of particles from collisions, and where s represents sources from other non-

transport processes. In this equation . is the total interaction cross section which
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removes particles from the distribution and %, is the scatter cross section which
results in a gain of particles to the distribution from collision events.

If a solution to the Boltzmann equation can be found, the problem of deter-
mining the dose distribution for that case is finished. All the methods below are

different approaches to solving this equation.

1.3 Deterministic Methods

The Boltzmann equation (equation 1.2) can be made tenable computationally by
using the technique of “differencing” [14]. This involves replacing the continuous
operations with their corresponding discrete operations, such that the differentials
become A's and the integrals become summations. This idea could, in princi-
ple, be utilized in radiotherapy applications by writing (and differencing) a Boltz-
mann equation with appropriate three-dimensional boundary conditions for each
CT voxel. However, a single CT scan will have on the order of 100,000 voxels in
the dose grid. This vastly escalates the computational intensity.

There is a further problem with using this type of approach for electron trans-
port in any setting. Numerical solutions for transport problems are best suited
for smoothly varying functions in space and direction. However, charged parti-
cle ;sranSport problems, particularly those involving electrons, often require very
anisotropic functions to describe their angular and spatial distributions. This
means that a solution to equation 1.2 will require many high-order terms to have
a satisfactory degree of accuracy'. This also causes a problem in computational
intensity.

Nevertheless, numerical transport methods do have at least one potential ad-

vantage over other methods; namely, they can account for perturbations. If it

11t has been estimated by Cullen that as many as 800 Gauss-Legendre moments would be
necessary to model the anisotropy for individual interactions [3]
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is not an absolute (accurate) answer that is desired, but rather knowledge about
a trend in the output variable after a minor change in the input conditions, nu-
merical methods can propagate the perturbation quickly. With the Monte Carlo
method, in contrast, the entire simulation would have to be run again with the
new input specifications, and would be subject to statistical noise which may hide

the perturbation,

1.4 Pencil Beam Transport: Fermi-Egyes The-

ory

The Pencil Beam method sums the dose distribution from individual small diam-
eter rays called pencil beams. A pencil beam is made up of particles which pass
through a differential cross sectional area, dxdy. The off-axis dependence of the
dose distribution for each pencil beam is described by the Fermi-Eyges theory of
thick-target multiple Coulomb scattering [23]. The on-axis dose information is
obtained from measured depth-dose data.

The calculation assumes that the patient or phantom can be represented by a
stack of slabs of different material types. Each individual slab is homogeneous and
infinite in lateral extent. Assuming a single pencil beam has normal incidence on

such geometry, the dose at a position (x,y,z) can be expressed as

D(:E,y,z):f(a:,y,z) g(z) 3 (13)

where the first factor is the off-axis term and the latter factor is the central-axis
term. According to Fermi-Eyges theory, the off-axis term may be represented by

a Gaussian of the form
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) (1.4)

where ¢ is the angular spread about the axis including the penumbra. The on-axis

term 1nay be expressed in terms of its relationship to the depth dose in water, gg

SSD +zeﬂr (15)

where 55D is the source-to-surface distance, and z.5s is the effective depth in
water, assuming the linear stopping power of the material at depth z is relatively
independent of electron encrgy for normal body tissue.

The quantity go can be related directly to a depth dose curve measured in a

water phantom, assuming a uniform incident beam, by the equation

_ gofz) R R i Yy
Dy(z,y,2) = 2702 fmfyemp( 207 Vg dz’ dy’ (1.6)

where the limits of the integral depend on the extent of the field at depth z.

One of the most widely used simulation methods in clinical electron radiother-
apy is an application of Fermi-Eyges theory in the so-called Hogstrom method [32].
The strength of the Hogstrom method of simulation is that it is fast enough for
clinical use, on the order of minutes. It also uses measured data for input that may
be specific to the treatment unit. It models penumbra, in homogeneous situations
{e.g., water phantoms) reasonably well, generally within approximately 10%. It
also models the dose distribution downstream from inhomogeneities that can be
considered “infinite slabs” in the lateral plane with the same success.

Aside from the geometrical assumptions of infinite homogeneous slabs, the pri-

mary weakness of this method is that it ignores the production of secondaries, and
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the energy loss that occurs from them. In reality, the Moller (electron-electron)
scattering changes the shape of the scatter distribution. The other major short-
coming of the Hogstrom method, and Fermi-Eyges theory in general, is that it does
not model single large angle scattering events, including backscatter. Neglecting
backscatter results in an underestimation of dose near bone or other high atomic

number interfaces.

The Hogstrom method has been found to under-represent hot and cold extremes
in energy deposition by approximately 10% [32]. Although the ability to run
simmulations quickly allows clinicians to try several different treatment plans, errors

of this magnitude are bound to have clinical significance in some cases.

1.5 The Monte Carlo Method

Monte Carlo is a general problem solving tool which has seen- applications in
many diverse fields including mathematics, economics, traffic contrel, and radi-
ation transport. The concept can be summarized by imagining the Monte Carlo
code as a black box. In each case, there are four required inputs to the box; namely,
a random number generator, the source characteristics, simulation geometry, and
a probability distribution governing the possible outputs.

The output of the box uses the random number to index the probability dis-
tribution in some way, and a corresponding physical or mathematical result in
generated. Usually this process is repeated many times, such that the result from
each iteration is combined with all previous results until the desired statistical
accuracy for the solution is achieved.

In electron transport problems, the Monte Carlo method is an indirect nu-
merical solution to the Boltzmann equation, based on statistical samples. The

technique consists of sampling the probability distributions (which contain the
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aggregate behavior of the Boltzmann equation) to govern the individual interac-
tions of electrons in a given material. Simulated transport proceeds by moving
sequentially from one physically valid set of electron variables (energy, llocation,
and direction) to the next. The code keeps track of the physical quantities of
interest (i.e., energy deposited) for a large number of histories to provide the re-
quired information about average quantities at the end of the simulation. The
higher the number of histories, the smaller the sampling error, and the closer the

approximation is to a continuous, Boltzmann solution.

Monte Carlo methods simulate electron transport by attempting to model the
effect of the physical interactions taking place. They are capable of accurately
modeling the dose response in a variety of difficult geometries, including anthropo-
morphic phantoms [18, 55]. There are several categories of Monte Carlo algorithms
commonly used for electron transport, which will be introduced in this section.

The main limitation of the Monte Carlo method applied to radiotherapy is the
run time required to obtain reasonable statistical accuracy in the dose. Typicé,lly;
running times for good statistics on a commonly available workstation would be
measured in hours or tens of hours?, whereas a desirable time frame for a clinical
code would be approximately ten minutes or less. However, this limitation will
perhaps be overcome with the advent of a Monte Carlo code written especially for
tracking photons and electrons through a regular Cartesian CT scan, as will be

introduced in Section 1.8.2.

There are three main ways Monte Carlo can be sped up to approach the desired
time window {39]. First, better computer hardware can (and will) be built,'which
should allow traditional electron transport codes (for example, condensed history
codes, which will be introduced in Section 1.5.1.) to be fast enough for clinical

3

use in three to eight years3. Secondly, a variety of statistical shortcuts such as

2The times are quite dependent on the complexity of the geometry and the size of the field.
Sextrapolating from developments over the past ten or so years
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variance reduction, roulette, range reduction, and correlated sampling have been
employed with some success [11]. These methods combined can reduce computing
time significantly, although the exact amount is highly problem-dependent [12].
The main drawback to these techniques is that they must be applied with great
caution to avoid biasing the physics in ways that change the answer significantly
in regions of interest.

Finally, Monte Carlo can be sped up by the development of new and faster
algorithms. For example, one success in this area is the Macro Monte Carlo (MMC)
code, introduced in Section 1.6.1, which is able to simulate electron transport
through a CT-volume in 200 seconds.*

It is in this category that this research attempts to make a contribution with

the Macro Response Monte Carlo code.

1.5.1 A Monte Carlo Method for Charged Particles: Con-
densed History

In the previous section it was found that analog techniques for charged particle
transport suffer from computational difficulties due to the large number of collisions
that must be modeled. Condensed history is a technigue which circumvents this
problem by combining many collisions into a single “step” or “jump” through the
medium. Rather than attempting to model all interactions, condensed history
approximates the aggregate effect of multiple collisions after a given step size. The
resulting distributions are somewhat more isotropic and much easier to model.

In order to simulate the phase space of an electron after it has had many
collisions, distributions which approximate their net effect on energy and angle are

made. These distributions are sampled at the end of each step. The step size may

4The problem was a monoenergetic, parallel 10 MeV, 5 ¢m x 5 cm electron beam on a head
phantom, with a resolution of 0.25 ¢cm x .25 cm x 1 em. A million incident electron histories
were calculated on a 200 MHz Pentium Pro running Linux 1.2.13.
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be thought of in terms of the physical distance traveled or the energy difference
between consecutive steps as the electron slows down. It must be emphasized that
a condensed history step is not a physical reality for either the incident pérticle or
the mediam; it is simply a convenient (but artifactual) discretization that is used
to periodically update the state of the particle.

There are several categories of approximations about the particle’s interactions
that are made in order for this technique to work. It will be seen that these
approximations, which are discussed below, become less accurate when the energy
region of interest is of the same order of magnitude as the atomic cnergy states;
i.e., in situations such as low kinetic incident energy (below 100 keV), and high
atomic number materials. Since condensed history algorithms are designed to run
efficiently, it is desirable that they have as few steps as possible, because the run
time for the code will be proportional to the number of steps. They also rely
on multi-scatter distributions (discussed below) which require a large number of
individual interactions occurring within each step to be valid. However, other
assumptions, such as the assumption that the energy can be deposited along a

straight line representing the path, become worse as the step size increases [9].

1.5.2 Two Flavors of Condensed History: Class I and Class
IT

Condensed History code algorithms were first divided into two categories, broadly
known as Class I and Class 11, by Berger [5]. This convention has been adopted
and discussed by many authors since then.

In Class I condensed history algorithms no individual interactions are modeled,
and all energy loss is assumed to be some constant amount per unit distance.
The Class I schemes group all interactions together in each step and summarize

the total effect at the end of the step by random sampling. The step sizes are
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predetermined, being either constant or logarithmically spaced. They use multi-

scattering distributions exclusively.

(lass 11 schemes, on the other hand, use restricted multi—scattering.distribu—
tions for the majority of the events, but model certain “catastrophic” events indi-
vidually, such as bremsstrahlung and ionizations giving rise to secondary electrons
(“knock-ons” or “delta-rays”) having an energy greater than some predetermined
cutoff value, Ta. A “catastrophic” mean free path is determined (M.} from the
sum of the cross-sections of the events which are considered catastrophic. The step

length is given by

5= —AwIn(l = &) = — A0t In(€) (1.7)

where £ is a uniformly distributed random number on the interval (0,1). Non-
catastrophic events are assumed to occur continuously throughout the pathlength,
causing a uniform mean energy loss per unit distance given by the restricted stop-

ping power for the medium.

Each scheme has advantages. Class Il algorithms model the initial state of
bremsstrahlung photons and knock-on electrons explicitly, which is a closer ap-
proximation of the true physical process. It is also the ﬁrét step towards allowing
their histories to be explicitly and independently followed. This allows their an-
gular deviations to be more accurate and the correlation between energy loss and
angular deflection is always conserved [2]. Class IT algorithms are dependent on the
threshold energy for knock-on electrons, Ta. The Class I algorithms are inherently
free of this dependency, but they are not able to model large-energy-loss events as
accurately since they don’t account for knock-on electrons and photons carrying

energy away from the primary track.
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1.5.3 General Condensed History Assumptions

1. Straight-Line Approximation
In condensed history codes, the average distance traveled is calculated from
the CSDA (Continuously Slowing Down Approximation) range. The electron
path over that distance is assumed to be a straight line segment, whereas
in reality, the electron is being deflected slightly after each interaction. The
larger the step size, the worse this approximation becomes. The approxima-
tion is also worse in high atomic number (Z) materials since the electrons

scatter at larger angles per collision than for low Z materials.

2. Multiple-Scatter Probability Distributions
As mentioned previously, condensed history algorithms must assume a dis-
tribution of possible scatter angles at the end of each step. Probability dis-
tributions representing the spread of net angular deflections after a step are
typically based on theories by either Moliere {8] or Goudsmit and Saunderson

24, 25].

e Moliere Model for Multiscatter
The Moliere approximation is valid for electrons that have undergone
many small deflections (> 20 scatters). The derivation relies on the use
of the small angle approximation, sinf ~ @, which limits the validity
of the theory to multiple scattering angles, #, which are less than ap-
proximately 20 degrees. More details of the Moliere distribution can be

found in Appendix Section A.1.

e Goudsmit-Saunderson Model for Multiscatier
The Goudsmit-Saunderson scattering theory is more robust than that of

Moliere. It does not rely on a small angle approximation, and it doesn’t



1.5. THE MONTE CARLO METHOD 17

explicitly require a large number of individual scattering events. Mukti-
angle scatter distributions are constructed simply by estimating the
average scattering angle for each collision and the number of collisions

that have occurred in a step [25].

Although the Goudsmit-Saunderson model does not explicitly require a
fixed number of scatter events per step in order to be valid, it does have
some computational limits. As can be seen in Appendix Section A.2,
the distribution takes the form of a Legendre series. As the pathlength
becomes shorter (which makes the straight-line approximation better),
higher orders are required in the Legendre series to make the expression
accurate, especially at large angles. Berger and Wang [7] report as many
as 999 terms may be required if the step size is reduced to 20 mean free

paths in carbon and gold.

e Comparison of the Two Multi-Scatter Models
Both the multi-scatter distributions perform equally well for small scat-
tering angles at relatively high energies and low atomic number ma-~
terials, which probably constitute the majority of cases in radiother-
apy. Beyond those conditions, Moliere distribution and the Goudsmit-
Sanderson distributions each have their respective niches [7]. The Moliere
distribution has the advantage that is relatively quick and easy to code
(and sample) because it is a universal function of a scaled variable. This
is makes it very convenient for finding the multi-scatter angle given a
randomly selected pathlength. The disadvantages of using a Moaliere
distribution at low energies stem from the small angle approximation
(which limit its use to deflections less than about 20 degrees) and the

competing need for many scatter events in each step.5 At high energies,

SBielajew [9] has found a way to overcome this limitation, see Section 1.5.6
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problems may arise because the Moliere theory does not take quantum

spin and relativistic effects into account.

The Goudsmit-Saunderson distribution, on the other hand, is more gen-
eral and robust. It is applicable for much smaller pathlengths than
Moliere and it is valid for any scattering angle. It can be used with any
elastic-scattering cross section calculated with any potential, including
those with spin and relativistic effects accounted for. It is not difficult to
correctly differentiate between the scattering of electrons and positrons.
The real problem with the Goudsmit-Saunderson distribution is its com-
plexity, which results in tedious coding and slow execution. This can
be somewhat ameliorated by storing pre-calculated distributions for a
chosen set of pathlengths, and sampling them at run time, but the code

then relics on non-random pathlengths.

3. Uniform Energy Loss Across a Step (dI5/dx)
Since condensed history methods do not consider the amount of energy lost
to the medium for each individual interaction, they must have an alternative
method of distributing the energy loss. As mentioned in section 1.5.2, Class
I transport assigns an amount of energy loss directly proportional to the
length of the (straight) path the particle took during the step. The amount
is simply the average amount an electron of a particular energy gives up to
the medium, which is varied slightly. Class Il transport does the same for

non-catastrophic energy losses.

The stopping power (or dE/dx) is the average amount of energy lost to
the medium per unit distance. Most of this energy lost to the medium is
transferred via ionization and excitation of atomic electrons. The extent of
this energy loss, in MeVem?/g for an electron can be calculated by Bethe’s

expression [8] modified by Rorlich and Carlson:
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where 7 is the kinetic energy of the electron in mgc? units; 8 is the ratio v/¢;
Ny is Avagadro’s number, 6.022 x 10% per mol; [ is the mean ionization
potential in MeV; and ¢ is the density effect correction factor. Note this
equation shows the stopping power is dependent upon the medium through
three parameters: Z/A, I, and é. If a stopping power is used for energy loss,
some compensation for the uniformity of the energy loss is required, as will

be discussed in the next section.

Bquation 1.8 has been previously calculated for a wide variety of materi-
als and energies, and the resulting tables of stopping powers are available
from agencies such as the International Commission on Radiation Units and

Measurements (ICRU) [47].

The Need for Energy Straggling Across a Step

Suppose a charged particle of energy 75 is incident on a layer of material.
When it reaches the other side of this layer, the particle will have an energy 73
which is less than its initial energy. Now suppose a series of identical particles
are allowed to traverse this layer of material. The energy of the particles on
the other side will not be constant, but rather will follow a distribution of
energies with considerable fluctuation. This is known as energy “straggling”.
An expression for the energy loss distribution was derived by Landau [35].

He expressed the probability of an energy loss between A and A + dA as
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Fr(A,8)dA = ¢p(A) dA, (1.9)

where s is the pathlength and ¢, () is a universal function of a scaled energy
loss parameter A, which is available in tabular form. The relation between

the scaled variable and the actual energy loss is given by

26me? 3? 5
A=ELX | — ) — 0 1.1
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The mean energy loss of the Landau distribution is the stopping power for
a particular material and energy. The stopping power method of handling
energy loss across a step is a mean energy loss per unit distance; the “true”
energy loss that would have occurred over such a step for a given electron
is some variation about the mean value. Because the Landau distribution
may be a relatively expensive method of treating energy loss, the effect is
often approximated by using a stopping power spread out by a Gaussian
distribution. There are various methods for estimating the width of such a

Gaussian; Blunck and Westphal [L0] recommend

QN
i
&
%,
[

(1.12)

where A is the mean energy loss in the pathlength s, and @ = 10 eV.
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There are several points to consider concerning the use of energy straggling
corrections. First, the corrections are better when the step size is relatively
small, however, we have seen that in small-angle scattering theories, the step
size must be large enough to include enough collisions for the approximations
to be valid. Secondly, most of the straggling is due to knock-on electrons of
appreciable energy. If a Class II algorithm is used, these will be tracked as
independent histories if they are above the threshold energy. However, if
a method could explicitly account for the distribution pattern due to lower
energy secondaries, there would be no need to induce a widening of an average

energy loss.

1.5.4 Strengths of Condensed History

Numerous condensed history codes have been shown to have good agreement with
experiment for high kinetic energies and in homogeneous materials. They are also
quite efficient, with run-times only slightly longer than the times required for an

analog photon Monte Carlo code running in a similar volume.

1.5.5 Condensed History Weaknesses

As was mentioned above, each of the fundamental assumptions upon which the
condensed history algorithm rests begin to fail when the medium is a high atomic
number material, when the kinetic energy of the primary particle becomes low,

and/or when the particle encounters inhomogeneities in the medium [4].

1.5.6 Existing Condensed History Codes

This section contains a brief introduction to a few codes that are presently available
in the scientific community for doing Monte Carlo transport of electrons {as well

as some neuntral particles). Although this is by no means an exhaustive list, these
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are codes that are reliably benchmarked and whose results are generally accepted.
They are presented from the point of view of their suitability for use in radiotherapy

simulation.

ETRAN

"The KTRAN (Electron Transport) code was released in 1970 by Berger and Seltzer
[6]. It uses Class I electron transport to treat both high and low-energy processes
(nominally up to 1 GeV and down to 1 keV), accounting for fluorescence, the
effect of atomic binding on atomic electrons, and energy-loss straggling. ETRAN
makes use of Goudsmit-Saunderson multiple angular scatter distributions, which
avoid the small-angle approximations intrinsic to Moliere. It uses a sampling of a
Landau distribution for energy loss [26]. In spite of its excellent accuracy for its
time and availability, ETRAN went largely unnoticed for several years. A later

version of this code was released under the name Sandyl [15].

MCNP

The MCNP {Monte Carlo N-Particle) Code was developed at Los Alamos National
Laboratory as a three-dimensional, time-independent, general purpose transport
code [13]. It was released for public use and found application primarily in nuclear
power plants and shielding problems. In the late 1980’s, electrons were added
to the code, in a Class-I {(ETRAN-like) package which gives the net flux through
a zone or voxel. Since it was designed to work for many different applications,
the Fortran-77 code has many options (such as variance reduction schemes) which
leads to a code which is very large and bulky. Many arrays in the code are zone-
dependent; the code is suited best to geometries divided into 200-500 regions. {CT
scans have on the order of 100,000 voxels.) The run times for typical radiotherapy

problems for standard MCNP4A would likely be on the order of several hours,
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which is too long to be acceptable for most routine clinical applications.

More recently, however, MCNP has been used to model the dose distributions in
boron-neutron capture therapy [27, 28, 29, 50, 37], which is an experimental treat-
ment using beams of epithermal neutrons . There have also been serious efforts to
evaluate its use as a tool for modelling general photon and electron radiotherapy
treatment planning [31, 33]. Modifcations in photon transport for lattice geometry,
as well as algorithm development for dose tallies have been undertaken by a group
at the University of California Los Angeles [20]. A preprocessor called RTMCNP
(Radiation Therapy MCNP) is also under development there, which will provide a
convenient interface into the MCNP4A command structure for radiotherapy treat-
ment planning calculations [20]. Since the run times are still too long for routine
use, this system is not presently intended to replace conventional means of treat-
ment planning. However, it could serve as an analysis tool for some cases, and as

a rhobust tool for further general algorithm development.

EGS4

History The Electron-Gamma Shower (EGS) code is a self-proclaimed “child
of a thousand mothers and fathers” [41]. It originally evolved out of a Fortran
code called SHOWER. written in 1963 by Nagel for high energy electrons (<1000
MeV) incident upon lead in cylindrical geometry. The database was later extended
to include any element and a number of compounds. In the early 1970s, it was
further extended to include photon interactions by a group at Stanford University,
and renamed EGS. At this time it was also translated from Fortran to an obscure —
and since-dead® — language called Mortran. The geometry was generalized through
the use of a user-written routine. EGS3 was released in 1978 and soon became the

industry standard for simulating electromagnetic cascades in various geometries

61t may be considered dead because its creator died and took most of its secrets with him;
however, in the Latin sense of a non-evolving language, it is still widely used.
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at energies up to a few thousand MeV down to kinetic energies for electrons of 1
MeV. The code was again considerably modified by Rogers and Bielajew in the
early 1980s for energies as low as 10 keV (EGS4}, making it suitable for medical

applications.

Transport Physics EGS4 uses Class Il electron transport, with a stopping
power with straggling for energy loss and with Moliere small angle scattering.
The Moliere theory has been recently extended by Bielajew to free it from the
need for > 20 scattering events per step. 1n fact, Bielajew has made it possible to
use a version of Moliere to simulate single scattering [9]. In general, the condensed
history steps are of variable size. An algorithm called PRESTA chooses large steps
when the distance to the next boundary is large, and takes smaller steps as the
boundary is approached, for better resolution of interfaces. It also uses a path
length correction which takes into account the difference between the straight line
approximation and the curved pathlength for each electron step, as well as a lateral
correction at the end of a step.

The following physics processes are taken into account by default [42] in EGS4:

e Bremsstrahlung production, using the Schiff formula for angular distribution

*

Positron annihilation in flight and at rest

Moliere multiple and singular scattering

Moller (e-e-) and Bhabha (e+e-) scattering

Continuous energy loss between discrete, catastrophic, interactions
— Total stopping power consists of soft bremsstrahlung and collisional loss
terms

— Collision loss determined by the (restricted) Bethe-Bloch stopping power

with the Sternheimer treatment of the density effect.
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Pair production

Compton scattering with binding effect correction

Coherent (Rayleigh) scattering included by means of an option.

Photoelectric effect (without fluorescent photons or Auger electrons)
In addition, EGS4 provides many options, including

o Electromagnetic Field transport

o I{ and L-shell fluorescence

e Ability to “force” photon interactions

e Variance reduction techniques: splitting and range rejection

Application to Radiotherapy EGS4 tends to be used indirectly for radiother-
apy applications, such as its use to generate “kernels” in the convolution method,
“kugels” in the MMC method (which will be introduced in-Section 1.6.1), and to
model detectors. One of the most significant drawbacks of using EGS4 in a clinical
setting, in addition to its bulky size, is that it is still relatively difficult to use.
Users must learn Mortran to write two subroutines, for scoring and representing
the simulation geometry. Using the code also relies on the use of Mortran macros
to change aspects of the internal code, which is a complicated venture that is prone
to error. Even so, EG54 is used regularly by a community of an estimated 6000
scientists [41]. It is an extremely well benchmarked code, and any code that hopes
o establish itself in this area will certainly need to meet its performance standards

before gaining acceptability.
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1.6 Local-to-Global Methods

As the following section will attempt to demonstrate, in order to meet the demands
of speed and accuracy for this application, it is possible to make the sacrifice in
another — hopefully more attainable — arena: storage. This scheme is especially
attractive given the fact that the application has been defined and requires only a

relatively narrow subset of energy ranges and materials.

1.6.1 Overview

Recently another class of charged particle transport methods has evolved which
could generally be classified as “Local-to-Global Monte Carlo” transport. They
are based on the use of pre-calculated probability distributions representing the
change in phase space a charged particle would have after exiting a given volume
element. The probability distribution functions (PDFs) for an exit state, given a
particular incident state, would be calculated by traditional, high-statistic runs of
another Monte Carlo code. The process of generating these PDF's is referred to as
the “local calculation” and the geometry over which the calculation is computed
is the “local geometry”. The Local-to-Global Monte Carlo transport proceeds by
advancing the particles through the medium during the global calculation in steps
constrained to the size and shape of the local geometry. For each step, the incident
phase space on the local geometry is the exit phase space of the previous step, until
the particle is either below the cut-off energy or has escaped the global geometry.
{In radiotherapy treatment planning problems, the global geometry is defined by
the patient CT data.) This process requires a library of PDFs for a variety of

incident energies and materials, each generated from a separate local calculation.
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Macro Monte Carlo (MMC)

The concept of Local-to-Global Monte Carlo was first proposed in the literature
by Mackie and Battista {40} in 1984. In order to speed up electron transport, they
proposed an algorithm called “Macro Monte Carlo” which would use cubical voxels
as the local geometry. The incident state in phase space of an electron would be
known, then it would “travel” through the cube as if the cube were a “black box”
and the output state would immediately be sampled from a distribution of possible
output states. These distributions would have been previously determined by a
condensed history Monte Carlo code on a cubical geometry. The transport would
continue by placing each cube end to end, depositing energy along the way. The
proposal was never implemented due to (what seemed in 1984 to be) unfeasibly
large storage requirements to store the PDFs. In fact, with cubical geometry, the
number of PDFs needed is rather large — for each incident condition, separate
PDFs must be generated for at least two exiting direction cosines and two location

variables.

The Macro Monte Carlo method was implemented more recently (1991) by
Neuenschwander and Born [44], who reduced the storage required by using a more
symmetric spherical local geometry. The spherical volume elements were dubbed
“kugels”. (Kugel means sphere in German.) Several other clever enhancements
have made this method extremely fast and a viable option for clinical electron

simulation [45].

The improved MMC algorithm features a variety of possible kugel sizes, so
that smaller step sizes can be taken as a significant boundary is approached, which
allows the user to get accuracy where it is important, yet take large, efficient step
sizes through the homogeneous portions of the patient or phantom, as shown in
Figure 2. In order for this to work efficiently, the volume is pre-processed and

a density assigned to each voxel. Although the pre-processing requires an initial
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computational investment, it is returned just a few minutes into the transport

calculation.

The MMC algorithm also uses energy partitioning across a boundary to take
into account differences in collision stopping powers on both sides of that boundary.
This provides a reasonably accurate and very fast way to deposit energy on either

side of the boundary.

For each material, kugel size and electron energy, the distributions of primary
electrons emerging from the kugel are stored in 100 equi-probable bins for efficient
sampling. Thus the determination of particle parameters after an MMC transport
step is reduced to determination of a table index, which is much faster than random

interpolation of cumulative PDF's.

Secondary energy for both photons and electrons is released into the local kugel
and scored “on the fly”. Later it is smeared forward in the incident direction,
exponentially attenuated and deposited in a post-process ray-tracing step after
the actual simulation. Like the pre-processing step, the post-processing step gives
a large gain in efficiency. Although this type of secondary transport is extremely
quick, it is also probably the most significant limitation on the accuracy of the
MMC method. By not explicitly modeling secondary electrons, the MMC code can
flatten out discontinuities in dose across interfaces. The secondary electrons are
sensitive to changes in the scattering properties of different materials. Neglecting
such changes can be important because they create “hot” and “cold” spots in the
dose distribution, particularly in the vicinity of bone-tissue interfaces and tissue-air

interfaces. Still, this method is superior to most other clinically used methods.
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Figure 2: Transport in the Macro Monte Carlo Method with “kugels”. The arrows
represent the electron trajectory at the source or exit position of the previous
step, and the line through the kugels represents the energy deposition path, which

extends from the incident point to the sampled exit point.

1.6.2 Response History Monte Carlo

1.6.3 Background

The Response History Monte Carlo (RHMC) method, although pursued completely
independently from the Macro Monte Carlo method, shares its underlying philos-
ophy and a few of its design features. It was developed at Lawrence Livermore
Laboratory (LLNL) in 1991 by Ballinger {3], a student from the University of
Michigan working with Cullen, Perkins and Rathkopf of LLNL. It began as a mar-
riage of an obscure “response matrix” Monte Carlo algorithm [59] and a Class I

condensed history algorithm.
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Local Calculation

The local geometry in RHMC is a hemisphere, which was chosen because it was
believed to be more suitable than a sphere for two reasons. First, the hemisphere
easily matches boundary conditions for normally incident electron beams in the
global calculation. Secondly, it avoids tracking backscattered electrons in the local
calculation. These backscattered electrons add to thé computation time without
contributing much information to the overall probability distribution being gen-
erated; it is more efficient to tally them immediately as they cross the planar
boundary. In addition, the hemisphere still allows a modest degree of symmetry

for decoupling the energy and angle distributions. 7

As with the MMC code, the RHMC code recognizes the competing interests at
stake in the decision of local geometry size (step size); namely, the larger the size
the worse the spatial resolution of the result, but the faster the global calculation

can proceed.

The local calculation in RHMC is done using an analog (single scatter) code
written explicitly for this use by Ballinger, rather than generating a PDF library
from a condensed history code as was done in the Macro Monte Carlo method. The
analog code is based entirely on LLNL databases for cross sections, rather than on
empirical approximations as is condensed history. Thus the RHMC method has
the potential to replicate the accuracy of high-quality experimental and evaluated

data.

"This means that the electrons that reach the surface of the hemisphere have traveled approx-
tmately the same distance, so that the electrons leaving the curved surface have then suffered
approximately the same number of collisions so energy and trajectory are only loosely related and
can be treated independently. The backscattered electrons are considered a completely separate
case in this method.
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Treatment of Secondary Particles

Unlike typical Class I transport algorithms, RHMC does permit knock-on electrons
to be tracked as regular {(primary) histories. The knock-on electrons are recorded
in separate PDFs during the local calculation, and these distributions are sampled
in the global calculation to determine the “birth state” of the knock-on. There is
no capability to model bremsstrahlung in the RHMC algorithm, probably because
it was designed for use in low-energy regimes where bremsstrahlung interactions

do not account for an appreciable fraction of the total cross section.

Strengths of Response History

The most significant strength of RHMC is its analog-type accuracy at a fraction
of the time required to do an analog calculation. Since the hemispheres are quite
small in size, it is able to attain excellent spatial resolution. It is one of the few
codes in existence that has been shown to model backscatter realistically, which

has great appeal for radiotherapy applications that involve inhomogeneities.

Weaknesses of Response History

The RHMC code was designed as a proof-of-concept type code, and is not suitable
for radiotherapy simulation in its present form for several reasons. First, the energy
range of its database is not well-represented at energies above 1 MeV, since RHMC
was designed to perform well at lower energies. Secondly, the only materials that
are immediately available in a form that can be read by the code are aluminum
and gold. These elements were chosen as an example of high Z and relatively low Z
materials (by nuclear transport physics standards) for which an extensive amount
of experimental data for benchmarking was readily available. A much more serious
limitation is that the RHMC code does not explicitly model bremsstrahlung events,

since it handles this energy loss in a Class I - type manner (i.¢., the energy is locally
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deposited, which is not a good approximation for photons).

1.7 Comparison of the Monte Carlo Methods

Like everything else, finding the best Monte Carlo method is an exercise in weighing
tradeoffs. Methods that are fast are often less accurate, and methods that are
accurate tend to be slow. There is also an intermediate, the Local-to-Global Monte
Carlos, which are relatively fast and accurate, but which require a substantial

amount of storage space in compensation.

1.7.1 Speed

In general, for Monte Carlo codes, the time required to complete a run on a given

platform can be expressed as
LTon = tstep * Thsteps/history * Thistories (113)

Assuming the 7npistories 18 constrained by the statistical accuracy required for
the answer (although variance reduction methods can decrease this factor), the
fastest codes will be those which economize on the time required for each step
and/or require less steps for each history.

The Macro Monte Carlo method was built to require fewer steps per particle
history, which allows it to excel in speed. The time per step is also minimal,'since it
consists mainly of sampling PDFs rather than doing calculations. The condensed
history methods are intermediate in speed, requiring times that are still generally
too long for clinical use, but within the realm of possibility in the next few years,
espectally if special hardware is implemented and/or variance reduction and other

statistical biasing can be used. Response History Monte Carlo run times are on



1.7. COMPARISON OF THE MONTE CARLO METHODS 33

the order of that required for condensed history (primarily due to the small step

sizes used), however RHMC is more accurate.

1.7.2 Accuracy

All of these codes perform approximately equally well in terms of accuracy for a
homogeneous phantom. [t is more interesting and realistic to benchmark inhomo-
geneous phantoms. The condensed history methods lose accuracy when the energy
range of interest extends below about 100 keV and in regions around an interface
differing in atomic number [3] due to underestimation of backscatter. The Macro
Monte Carlo method suffers from the same shortcoming as long as it is using prob-
ability distribution functions (PDFs) generated by a condensed history code (at
present its benchmarks were done using EGS4 data). Tt should be pointed out that
this method has the potential to read PDF's from other, more accurate sources as
well, although it still has other shortcomings in this area, like its treatment of
secondaries and its large kugel sizes (on the order of several millimeters). The
Response History method, on the other hand, was especially designed for high-
accuracy results. The fact that it is based on a single scatter code and that its
“local geometry” (hemispheres) is relatively small {on the order of microns) gives it
an advantage over the other methods, especially at low incident energies and when
backscatter from interfaces is important. The most accurate simulation method

available today is the analog or single scatter method [4].

1.7.3 Storage

There are two factors that affect the storage and/or size of a code: versatility
and speed. The dramatic speed-up of the RHMC and MMC methods over single
scatter and condensed history codes, respectively, are obtained at the expense of

storing the pre-calculated results of another slower code. However, both of these
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ELECTRON DOSE CALCULATION METHQODS

Table 1: A comparision of various features of electron transport in Monte Carlo
codes introduced in Chapter 1.

Algorithm | Condensed History Condensed History Local to Local to
Class 11 Class I Global Global
Code EGS4 ETRAN/MCNP4A MMC RHMC
Angular Moliere Goudsmit-Saunderson from from
Scatter > 20 events No small ¢ approx EGS4 Analog
Model small 8§ approx. Legendre poly. code
Energy restricted stopping  Landau Distribution from from Analog
Loss power assumes Lp;ng << B EGS4 code
straight- straight- from from
Location liste line Analog
approximation approximation EGS4 code
Secondary generated by none, but smeared forward same as primary
Electrons Bhabha-Moller E loss included in at end of if escape
cross-sections Landau distribution simulation local geometry
Step Size variable steps: steps of spheres: hemispheres
and Shape | 1% — 20% E loss  predetermined length r=.05.3cm 1077 — 1072 cm
Energy 100,000 MeV - 100 MeV - 20 MeV 200 keV -
Range 10 keV 100 keV 200 keV binding energy

codes were built for specific applications, while most other condensed history codes

are large in order to be useful in a variety of situations. Furthermore, the cost of

memory is decreasing at such a fast rate (about a factor of two every five years)

that this concern is probably not as binding as the concerns of speed and accuracy.

1.7.4 Summary

The characteristics of the various algorithms are briefly summarized in Table 1.
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1.8 Recent Developments

There have been at least two recent efforts to make Monte Carlo caleculations

routinely available for radiation treatment planning.

1.8.1 The OMEGA Project

The Ottawa - Madison Electron - Gamma Algorithm (OMEGA) project is a multi-
vear study undertaken jointly by the University of Wisconsin - Madison and Na-
tional Research Council of Canada (NRCC). The purpose of the project is to
routinely calculate the dose from electron beams in clinical-type situations using
Monte Carlo. Presently, this is accomplished primarily through the EGS4 code.

The OMEGA group has broken down the problem of radiotherapy dosimetry
into two specific areas: (1) characterizing the beam as 1t exits the accelerator and
passes an arbitrary scoring plane, which is different for each treatment machine
but the same from patient to patient; and (2) transporting the-radiation from
this scoring plane through beam shaping devices, which may change with each
treatment, and patient anatomy. This division is illustrated in Figure 3.

In order to transport the electron beam through the treatment head of the
accelerator, a new EGS4-based code system, BEAM, was written. BEAM pro-
vides information about both the incident energy and the angular distribution of
electrons at the scoring plane. Each head configuration can be simulated once,
then the histories can be started at the scoring plane. The second part of the
project has resulted in a Monte Carlo code, DOSXY?Z, integrated with a 3D ra-
diotherapy treatment planning system which was developed at the University of
Wisconsin. Much of the work on the MMC code, discussed in Section 1.6.1, was
carried out as part of the OMEGA project. These tools are presently being used

for electron-photon transport in patient volumes and test phantoms.



CHAPTER 1. ELECTRON DOSE CALCULATION METHODS

beam axis

scattering foil

ion chamber

primary collimation

phase space plane

patient-specific beam shaping

patient anatomy
(CT scan)

Figure 3: Two separate portions of the problem of radiotherapy simulation.
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1.8.2 The Peregrine Project

Peregrine is a 3-dimensional Monte Carlo code developed at LLNL specifically to
address the problem of radiotherapy simulation. It was designed to track particles
through a regular Cartesian mesh based on the CT scan, at the same resolution.
It is intended to be computationally fast enough to be acceptable for routine dose
calculations.

Peregrine breaks the problem of radiotherapy simulation down in a manner
similar to that of OMEGA, and has source models which are derived in a sepa-
rate computation from OMEGA’s BEAM code and MCNP4B [51, 16]. The source
models approximate the spectral output of the accelerator at an arbitrary trans-
verse plane downstream of the electron target, flattening filter, primary collimator,
and monitor chamber.

The simulation proceeds by sampling the energy and trajectory of an emitted
particle, doing simplified transport through the collimators and any other aper-
tures, blocks, or wedges, until the particle reaches the the patient, where Monte
Carlo calculation of dose deposition is done.

Peregrine is designed to run on its own hardware in conjunction with an existing

client treatment planning system.

1.9 Scope of this Work

The initial impetus of this work was to see if Peregrine, like OMEGA, could benefit
from a Local-to-Global approach to electron transport.

The process will be unfolded in the chapters to come. Basically, the MRMC
method combines the strengths of the previous work in this area. The local stage
is based largely on Ballinger’s work. The geometry was changed from hemispheres

to spheres, a wider range of materials was included, a newer version of the EEDL
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database was used, and the benchmarking emphasis was on energy deposition in
slabs as opposed to low-energy phenomena, like backscatter.

The global stage was based largely on Neuenschwander’s work, with some dif-
ferences. The MRMC stepping routines were coupled to a version of Peregrine for
gamma transport. The electrons are incident in the center of the kugel, rather
than the edge, for better symmetry. Secondary electrons that escaped the kugel
are transported in the same manner as primaries. The energy deposition algorithm
was designed to spread energy out across many zones, to somewhat compensate
for the increased CPU time required by explicit transport of secondaries.

Chapter 2 is a description of the first step in designing a new Local-to-Global
electron transport package with single scatter physics as its foundation. The code
that was written to fill this need, CREEP (Code for Reconstruction of Exact
Electron Progression), is introduced. The physics it simulates, the assumptions it
contains, the logic flow, and the results obtained with it are discussed in detail.

Chapter 3 will discuss the MRMC library — the collection of kugel data sets
generated by CREEP. It details the quantities selected for tallying, the binning
of the kugel surface and the binning of the individual probability distributions.
The layout of the library is shown, as well as several examples of methods to run
multiple kugel sizes efficiently. Memory requirements are also discussed.

Chapter 4 discusses a practical, efficient application of CREEP through a global
stepping code. The logic flow, the quantities sampled from the kugel data library,
and various algorithms for energy deposition and boundary crossing are discussed
in detail.

Chapter 5 shows a series of test problems that were designed to evaluate spe-
cific features of this method. The depth dose results for several simple phantoms
obtained by MRMC and condensed history Monte Carlo are shown and analyzed.

Chapter 6 contains the summary and conclusions of this research, as well as

some suggestions for future work.



Chapter 2

Single Scatter Electron Monte
Carlo

2.1 Introduction

This chapter describes the single scatter Monte Carlo (SSMC) code, CREEP, that
serves as the local phase of MRMC transport. Although its primary purpose is
to compile the probability distribution functions (PDFs) necessary for the global
phase of MRMC transport, the code has also proven to be interesting in its own
right. The following sections describe the physics algorithms and databases used

by CREEP, as well as a number of results that were obtained with the code.

2.1.1 Why Single Scatter?

Single scatter physics is gaining attention for electron transport, despite the
fact that it is inherently very time consuming. One reason is that since single
scatter calculations conform (more) closely to the physical processes the electron
undergoes, they can serve as a means to explore the validity of assumptions used in
other transport techniques. In particulajl;, single scattering can help make efficient
electron transport methods, like condensed history and local-to-global methods,
more accurate. A-

SSMC allows large angle scatter and backscatter measurements to be calenlated

with greater accuracy in a reliable manner. Large angle scatter and backscatter,

39
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being relatively rare, result in much of the seemingly eccentric energy deposition
behavior of electron beams (and photon beams for that matter, since photons
deposit their energy to the medium through secondary electrons), including lateral
blooming with distance and nonuniformities (“hot” or “cold” spots) found near

changes in the medium type or density.

2.1.2 The EEDL Database

The Evaluated Electron Data Library (EEDL) was established at LLNL by 1990 to
complement the ENDL (Evaluated Nuclear Data Library) and EPDL (Evaluated
Photon Data Library}. Complete documents detailing its contents, with deriva-
tions, are available [17, 48, 49]. Cross sections for each atomic subshell, for each
interaction, are tabulated on an energy grid with a variable placement of points
between 10 eV and 100 GeV, for atomic numbers 1 to 100.

The elastic scattering cross sections are based on those of Mott for energies
greater than 256 keV and of Riley below 256 keV. These data were then extrapo-
lated to cover the entire energy range. Spectra, in the form of probability distri-
bution functions (PDFs), of angular deflections for a variety of incident energies
are also tabulated.

The impact ionization cross sections are based on the Moller formalism with
other corrections to accurately model small energy loss collisions. Energy loss
spectra are available at a number of incident energies for individual ionization and
bremsstrahlung events, as well as the spectral average energy loss.

The bremsstrahlung cross sections were determined by Seltzer and Berger [54]
by interpolating between the relativistic data from the code of Tseng and Pratt
58] available up to 2 MeV, and the results of Bethe-Heitler, expected to be valid
above 50 MeV.

The excitation database contains cross sections and the average energy loss to
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excitation as a function of incident energy. There are no spectral data for excitation
energy loss in EEDL at this time. A summary of the database features that were
used at some point in CREEP can be seen in Table 2 and Table 3.

It should by noted that an independent, simpler electron single scatter code,
also based on the EEDL data, was written by Ballinger [4] in 1991 at LLNL and

provided a strong foundation for this work.

2.2 Physics Algorithms

The CREEP code is written in FORTRAN and C, in a very simple style with
the intent of being extremely portable. Since this code is intended primarily as a
means to explore basic physical properties of the medium, the present incarnation
assumes only simple geometries: either spherical (user specifies radius) or slab (user
specifies %, y, z), consisting of one type of material. Several slabs may be pieced
together to simulate a layered geometry, since the output of one slab may be used
as spectral input into a neighboring slab, and the backscattered energy spectrum

from the each interface can be transported backwards into the prior medium.

2.2.1 Simulating Individual Electron Inferactions in Media

The algorithm for a single scatter charged particle code is basically the same as
the algorithm that has historically been used in photon and neutron Monte Carlo
codes. Briefly, one finds the distance to interaction by finding the total cross
section at the present energy and uses the relation s = —Aln{y) , where x is a
random number on the interval {(0,1). One then determines which interaction took
place, by forming and sampling from a cumulative probability based on the cross
sections for each of the four possible interactions (ionization, excitation, elastic

scatter, bremsstrahlung). The energy, position and trajectory of the particle is
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Table 2: Some relevant contents of the EEDI, database for an element. Elements

with atomic numbers 1 - 99 are available in the database. All energies are in MeV;

cross sections are in barns. P is the differential probability of the particle out for

each of the appropriate distributions. The integer labels represent flags EEDL uses

to identify the interaction, data type, and outgoing particle.

Interaction Type of Data Particle Out EEDI, Columns
8 0 - Integrated elastic 0 Ein, o
elastic scatter cross section (none)
8 10 - average energy 11 Ei < Blogs >

elastic scatter

given to residual atom

residual atom

8 10 - average energy 9 B, < E,;>
elastic scatter after event “primary” e-
8 21 - scatter angle 9 Ei ,<1—cos@>,P
elastic scatter distribution “primary” e-
81 0 - Integrated ionization 0 Em 0
ionization subshell cross section (none)
81 10 - average energy 9 E. , <E.:>
ionization after event “primary” e-
81 10 - average energy 19 FEo , < Eion >
ionization after event “knock-on” e-
81 21 - spectrum of 19 E. ., <E.,>,F
ionization secondary energy “knock-on” e-
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Table 3: Some relevant contents of the EEDL database for an element. Elements

with atomic numbers 1 - 99 are available in the database. All energies are in MeV;

cross sections are in Barns. P is the differential probability of the particle out for

cach of the appropriate distributions. The integer labels represent flags EEDL uses

to 1dentify the interaction, data type, and outgoing particle.

Interaction Type of Data Particle Out EEDL Columns
82 0 - Integrated brem 0 B, o
bremsstrahlung cross section {(none)
82 10 - average energy 9 B, < Koy >
bremsstrahlung after event “primary” e-
82 10 - average energy 7 Eio , < Eppo >
bremsstrahlung after event, brem photon
82 21 - spectrum of 7 Ein s < Eppo >, P
bremsstrahlung secondary energy brem photon
83 0 - Integrated excitation 0 B, o
excitation cross section (none)
83 10 - average energy 11 Ein ) < Ejpes >
excitation given to residual atom | residual atom
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updated to reflect the chosen interaction in a manner described for each below.
Then the same process is begun again, provided the electron has not escaped the
medium or fallen below the energy cutoff.

CREEP is actually a family of four codes, having a similar ancestor code but
they have evolved separately to fill specific niches. Slabcreepl, was written for the
purpose of benchmarking with slab and foil experiments. Slabcreepll does the same
but for media that are not comprised of a single element; it handles compounds
and mixtures (see Section 2.2.2) and was primarily designed as a means to compare
the CREEP method with other codes and experiments for gencrating depth-dose
curves in water, which is the most important medium for radiotherapy applications.
The ultimate application for CREEP was to generate a library for the Macro
Response Method (MRMC), for which probability distribution functions arising
from transport through a sphere are required. Thus Kugecreepl and Kugcreepll
were born; the former for single-clement materials and the latter for compounds
and mixtures in spherical geometry. It would have been possible to merge the
codes, however, the decision was made to keep them separate in the interest of
efficiency.

The flow chart illustrating the general logic of the codes is shown in Figure 4.
For both the slab-geometry code and the spherical-geometry kugel code, there are
two types of input files. The first is a very simple user-generated file explaining
the Monte Carlo tracking parameters, the medium, and the output information
desired. The second type of information files required is the EEDL datafile for
each element in the medium.

The CREEP code deviates from the ideal single scatter algorithm in that (for
most applications) it does not simulate every excitation event individually. In-
stead, it subtracts off the expected excitation loss after each of the other events,
as described in the excitation section below. This choice was made because it was

demonstrated that there was little to gain by direct simulation of excitations, since
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calculate min. distance
distance to collision

electron is born
direction/energy /
position

advance electron
with excitation E loss

update region #
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sample knock-on E
update primary E
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‘.

Figure 4: The logic flow of the CREEP analog electron scatter Monte Carlo code.
When an electron reaches a “kill” box, its residual energy is deposited locally and

another electron is initiated from the bank.
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they do not have a large effect on the electron trajectory, and the amount of the
overall energy loss to this mechanism — although it can be large - is predictable. Us-
ing the pathlength-based expected loss also makes the results stafistically smoother

for the same number of histories.

Ionization

Ionization interactions are a dominant energy loss mechanism for electrons slowing
down from the radiotherapy energy range. They occur when a charged particle
imparts enough of its kinetic energy to a orbital electron to set that electron free.
This process is illustrated in Figure 5. Once the electron is free it is called a “knock-
on” electron or “delta-ray”. For incident electrons, the interaction is often pictured
as a “black box” in the vicinity of an atomic electron with two electrons exiting.
Because electrons are indistinguishable from each other, it is simply assumed that
the electron with the higher exit energy was the primary electron, making the
remaining electron the “knock-on”. With this definition, the maximum energy a

knock-on electron can have is given by

TO - Ebind

T.énock,max = T (21)

where Ey;nq is the binding energy of the shell from which the knock-on was freed.

To simulate an ionization interaction, the knock-on electron energy is sampled
from a spectrum. The EEDIL database has a number of spectra tallied for various
incident energies; statistical interpolation is used to choose between them. Once
the energy of the knock-on has been selected, 2-body kinematics (neglecting bind-
ing energy) are used to update the primary electron’s trajectory. If Ko = Tp/mqc?
and the ratio y is defined by x = Tinockon/To , then the outgoing angles are given
by
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Figure 5: An ionization interaction resulting in the liberation of an atomic electron.
The electron is incident with energy Tg, and exits with Ty, after setting a knock-on

of energy Tion.
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x(Ko +2)
0 — e 2.2
058, R (2.2)
(2.3)
and for the knock-on electron
1— Ko+ 2
Cosgknock - ( X)( 0ot ) (24)

(1 *X)ffo“l’z ’

Note that because the binding energy is neglected, these angles are less valid at
energles near it. Since such electrons don’t travel far, this assumption does not
have a large impact on the overall transport results.

CREEP handles secondary electrons by putting the primary on a memory stack
and tracking the knock-on immediately, until they fall below the energy cutoff or
escape the volume, at which point the primary history is continued. A special
energy cutoff parameter is used for knock-ons, so the user can readily imitate Class
IT condensed history codes, which only simulate ionization events if the knock-on
is above a particular energy.

Presently it is assumed that all binding energy is locally deposited. For ar-
bitrary media, this assumption is weak since significant fractions of the binding
energy may be re-emitted as Auger electrons or fluorescent x-rays. Many of the
x-rays are emitted at energies that fall just below the photoelectric edges, where
the cross-sections are small and they can therefore carry their energy relatively far
from the interaction site. However, the atomic de-excitation of low atomic num-
ber materials is dominated by Auger electron production, which do not travel far.
Since tissue is mainly of low atomic number, the local deposition approximation is

justified for this application. Another LLNL database, EADL (Evaluated Atomic
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Data Library) contains all the necessary information to model these relaxations

physically, but is not incorporated into the code at this time.

Elastic Scattering

In elastic scattering interactions, an incident electron traveling in the vicinity of a
nucleus scatters off the nucleus at some angle without a significant loss in energy,
due to the large mass difference between the two. However, each scatter does cause
a (generally) modest angular deflection. This is illustrated in Figure 6. Due to its
large cross-section, the net effect of elastic scatter on a particle’s trajectory can be

very significant, as is demonstrated by Figure 7.

Figure 6: An illustration of an elastic scatter interaction. The electron is deflected

through an angle # with no energy loss.

The cross section for elastic scattering as a function of solid angle is given by

the McKinley-Feshback form of Mott scattering in the expression

do.eias . 22 62 9 1-— 182 1

dQ) 4 mgc? iy sz’n‘i(%)

x {1 — ﬁQSinz(g) + ﬂﬁl—i—?(l — sm(g))sm(g) . (2.5)
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Figure 7: An example of the effect of elastic scatter angles on energy deposition
versus depth in beryllium. The “no elastic scatter” curve was made by reassigning
the scatter angle to 0 after each elastic event. Its shape approximates the “Bragg
peak” formed by heavier charged particles, but with a remaining width that is a
function of (1) energy straggling, discussed in Section 1.5.3 and (2) scatter angles
due to ionization interactions, given by equations 2.2 and 2.4. The mean range for

300 keV electrons in beryllium is 0.1037 g/cm?.
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where Z is the nuclear charge, e is the electron charge, and the term outside of
the square brackets is the Rutherford scattering term. Note that the cross section
depends inversely on the square of the rest mass of the particle, so heavy charged
particles, like protons or ions, scatter much less than electrons and positrons.

To simulate this event, one samples a scattered angle from EEDL (where it is
tabulated as 1—cosfl) and updates the trajectory. Although most elastic scattering
results in only a small angle, it is this mechanism that is largely responsible for

the phenomena of backscatter and large angle scatter.

Bremsstrahlung

Bremsstrahlung interactions occur when the electron passes near the nucleus and
accelerates due to the interaction of their Coulomb fields, causing a photon to be
emitted. A schematic of this process is shown in Figure 8. Although low energy
photons are more likely, an electron can lose up to all of its energy to the photon.
As an energetic charged particle of mass my and charge ze passes in the vicinity of
a nucleus of mass M,, and charge Ze, there will be an electrostatic force between

the two particles due to the interaction of the Coulomb fields, given by

KkzZe?

r2

Fg=

(2.7)

The incident charged particle will experience an acceleration due to this force of

magnitude

Kz Ze?

rimg
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where r is the separation between the particles and & is a fundamental electro-
magnetic constant = (4dwep) . Assuming the mass of the charged particle is small
compared to the nucleus, the nucleus does not move significantly as a result of
the force in equation 2.7. However, the force will cause the charged particle to be
deflected from its path and momentarily orbit around the nucleus. An accelerated

charge radiates energy at a rate proportional to the square of its acceleration

.

dT kzZe?\’
_|brem®C ( ) ) (29)

dt r2my

Equation 2.9 illustrates several important concepts governing bremsstrahlung emis-
sion. First, it is apparent that it is much more common for light particles such
as clectrons to emit photons than it is for heavier particles like protons, due to
the 1/m3 dependency. Secondly, it can be seen that bremsstrahlung is much more
important in high atomic number materials (due to the Z?) than in low atomic
number materials. In principle, it is possible to have bremsstrahlung created in
the field of an atomic electron, but the probability is much lower, since the charge
(and therefore the acceleration) is less.

A more exact equation for the differential cross section was derived by Schiff
[52]. The basic dependencies shown in equation 2.9 can be seen in his result,
which is expressed in terms of a reduced angle, z = Tpfy/moc?, where 8 is the

angle between the photon and the incident electron trajectories:

4z [ & \2dk 1622T ”
- = rdp d e~ 2.10
ook, ) 137 (moc2) P { @2+ 1)'T, (2:10)
 (T+ 1) 4Tt 4T ] (E)}
(z2 + 1215 L2 + 1T (2 + )T ’

(2.11)
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Figure 8: A electron giving rise to a bremsstrahlung photon in the field of a

nucleus. The electron is incident with energy Ty and scatiers through an angle p

with outgoing energy 71" creating a photon of encrgy hu.

where

1 mock \ 2 Z38\? )
M) (2T0T) + (111($2—|—1)) ! (2.12)

and k = hy =1y — T, the energy of the bremsstrahlung photon.

The exact rate of energy loss by bremsstrahlung depends on the quantum me-
chanical nature of this interaction, which is beyond the scope of this work (see, for
example, Tsai [57]). However, for energies less than 100 MeV, the energy loss may

be estimated by the equation

1 (dT JNZTy [ 2Ty +moc?) 1
() =4 1 ~ =1, 2.13
p(dm),,ad 07137 [n oc? 3 (2.13)

where N, = (NsZ)/A, which is the number of electrons per gram, Ty is the
kinetic energy of the incident electron, and 7y is the classical electron radius

(rg = 2.81794 x 10 m). The important physics revealed by this equation is
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that energy loss increases directly with atomic number of the material, and the
loss increases to a somewhat greater extent with the energy of the electron.

In bremsstrahlung interactions, the initial momentum of the incident particle
becomes shared between the scattered charged particle, the atomic nucleus and
the emitted photon. Therefore, the photon can have any energy up to ity = Th.
In this manner charged particles, especially electrons, have a small probability of
losing almost all of their energy in a single interaction, however, this only occurs at
extreme relativistic energies. At such energies, both the photon and the scattered
charged particle advance preferentially in the forward direction. For moderate
energy charged particles, however, the photon carries only a very small momentum
and can be emitted in any direction.

In CREEP, the photon energy is sampled from a spectrum, and an empirical
relation can be used to determine the cosine of the scatter angle, cosy, the electron

travels through as a result of the interaction:

myc® mgCZ)
TD — T(] ’

cosp =1 — ( (2.14)
where Tj is the kinetic energy of the incident electron at interaction site, i.e., the
energy lost to excitations from the previous step to the present location has been
subtracted.

The “birth” angle of the bremsstrahlung photon is more difficult; it is most
correctly obtained by sampling the Schiff formula {52}, but CREEP uses the ap-
proximation

2
MgC
By = ——— 2.15
0 m002 + T() ( )
where the denominator represents the total energy of the electron at the site before

the event.
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CREEP itself does not track the bremsstrahlung photons that are created;
they are tallied on the spot so that their phase space can be banked and passed
off to another Monte Carlo code with photon tracking capabilities. Note that any
additional electrons the bremsstrahlung photons would have generated are lost,
so CREEP cannot assume any energy deposits arising from photons. If, however,
CREEP is coupled with a photon MC code in a way that allows that code to pass
back further secondary electrons these can be restored. It should be noted that the
bremsstrahlung photon is much more penetrating than the charged particle that
caused it, and therefore carries its energy far from the original charged particle
track. Monte Carlo codes that neglect bremsstrahlung interactions thus fai! to

model this energy deposition pattern accurately.

Excitation

The primary charged particle can excite an atom even thought it does not impart
enough energy to the atomic electron to free it. Instead, the energy transferred to
the atom causes the orbital electron to be promoted to a higher electronic state.
This 1s illustrated in Figure 9. The promoted orbital electron relaxes either by
producing characteristic radiation of energy hv; or by producing Auger electrons
of energy hv — Ejinging; or transferring the energy to molecular vibrational modes
at higher energy. Since the energies involved are typically very low compared to
the energy range of interest, the individual events are often not modeled and the
energy that is given to them is instead considered to be locally deposited. In fact,
these events may be lumped together and assumed to cause a uniform energy loss
per unit distance. This is an “excitation-only” stopping power.

In CREEP, the energy loss due to excitations can be accounted for by finding
the total excitation cross section at current energy, and using the mean energy lost

to excitation events at that energy to construct an excitation-only stopping power
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Figure 9: A incident electron causing an atomic electron to become promoted into
a higher electronic state. The incident electron has given up a small amount of its
energy, 7o — T, equal to the difference in energy levels. Some of this energy may

be re-emitted as Auger electrons or fluorescent photons.

through the relation

dE, Ny

— Jex Y emz 2.1
(S = S p o (2.16)

where N, is Avogadro’s number, A is the atomic weight, p is the density, g.. is
the total excitation cross section (summed over all subshells), and € is the mean
energy loss due to excitation at a given primary energy. This stopping power is
multiplied by the distance between the last event and the present event to get the
energy lost to excitations in transit, which is subtracted from the electron’s energy
before calculating the distance to the next event.

Another option for modeling excitation is to treat it in the same analog manner
as the other interactions. There is no deflection angle, and, rather than sampling
from a spectrum of possible energy losses, the average energy loss per event (for

an electron of the current energy) is used. As can be seen in Table 3 the spectral
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energy loss distributions for individual excitation events is not available at this

time.

2.2.2 Compounds and Mixtures

A special version of the CREEP code handles all compounds and mixtures by
combining the EEDL element data using Bragg additivity of cross sections. This
method was originally introduced for determining the stopping power of a com-
pound by computing a weighted sum of the stopping powers of the atomic con-
stituents of the compound, and was recently described in ICRU 37 [47]. To compute

the total cross section of a compound, ¢, the additivity rule takes the form
o= ijoj, (2.17)
J

where w; is the fraction by weight and o; is the cross section of the ;% atomic

constituent.

To use the compound/mixture version of CREEP, the user must enter weight
fractions of each element in the compound or mixture, and the density for the
compound. This simple approach does not account for any chemical binding effects,
which start to become important near the binding energy of the medium, or other

effects arising from the chemical state or neighboring molecules in the medium.

The algorithm is the same as that described in the beginning of the previous
discussion for elements, except that bnce the distance to the next interaction is
found, the next step is to select which medium the electron will interact with (by
comparing a random number to their mass-fraction weighted cross sections) and

then selecting the type of interaction as usual within that medium.
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2.3 CREEP Results

The benchmarking of CREEP results with experimental data for a variety of el-
ements and select compounds and mixtures, over the energy range of the EEDL
database, is a large effort that is still in its infancy. There are many possible
outputs of this code to be analyzed; some of which can be readily compared to ex-
periments and theoretical models. Other information has no feasible experimental
equivalent and as such is of interest primarily in a qualitative sense (such as “event
maps” which plot interaction sites for all types of interactions). A few examples
of both quantitative and qualitative results are shown in the remainder of this

section.

2.3.1 Backscatter Studies

Historically, backscatter has been difficult for condensed history codes to simu-
late correctly. Figures 10 and 11 show two examples of backscatter information
generated by CREEP compared to experimental values. The agreement is within
less than a percent for the backscatter coeflicients. For the backscattered energy
spectrum, the binning structure within CREEP was chosen to match that